Absolute dating is the process of determining an age on a specified chronology in archaeology and geology. Some scientists prefer the terms chronometric or calendar dating, as use of the word "absolute" implies an unwarranted certainty of accuracy.
In archaeology, absolute dating is usually based on the physical, chemical, and life properties of the materials of artifacts, buildings, or other items that have been modified by humans and by historical associations with materials with known dates (such as coins and recorded history). For example, coins found in excavations may have their production date written on them, or there may be written records describing the coin and when it was used, allowing the site to be associated with a particular calendar year. Absolute dating techniques include radiocarbon dating of wood or bones, potassium-argon dating, and trapped-charge dating methods such as thermoluminescence dating of glazed ceramics.
In historical geology, the primary methods of absolute dating involve using the radioactive decay of elements trapped in rocks or minerals, including isotope systems from younger organic remains (radiocarbon dating with ) to systems such as uranium–lead dating that allow determination of absolute ages for some of the oldest rocks on Earth.
It takes 5,730 years for half the carbon-14 to decay to nitrogen; this is the half-life of carbon-14. After another 5,730 years, only one-quarter of the original carbon-14 will remain. After yet another 5,730 years, only one-eighth will be left.
By measuring the carbon-14 in organic material, scientists can determine the date of death of the organic matter in an artifact or ecofact.
An additional problem with carbon-14 dates from archeological sites is known as the "old wood" problem. It is possible, particularly in dry, desert climates, for organic materials such as dead trees to remain in their natural state for hundreds of years before people use them as firewood or building materials, after which they become part of the archaeological record. Thus, dating that particular tree does not necessarily indicate when the fire burned or the structure was built.
For this reason, many archaeologists prefer to use samples from short-lived plants for radiocarbon dating. The development of accelerator mass spectrometry (AMS) dating, which allows a date to be obtained from a very small sample, has been very useful in this regard.
Argon, a noble gas, is not commonly incorporated into such samples except when produced in situ through radioactive decay. The date measured reveals the last time that the object was heated past the closure temperature at which the trapped argon can escape the lattice. K–Ar dating was used to calibrate the geomagnetic polarity time scale.
Heating an item to 500 degrees Celsius or higher releases the trapped , producing light. This light can be measured to determine the last time the item was heated.
Radiation levels do not remain constant over time. Fluctuating levels can skew results – for example, if an item went through several high radiation eras, thermoluminescence will return an older date for the item. Many factors can spoil the sample before testing as well, exposing the sample to heat or direct light may cause some of the electrons to dissipate, causing the item to date younger.
Because of these and other factors, Thermoluminescence is at the most about 15% accurate. It cannot be used to accurately date a site on its own. However, it can be used to confirm the antiquity of an item.
Careful sampling under dark conditions allows the sediment to be exposed to artificial light in the laboratory which releases the OSL signal. The amount of luminescence released is used to calculate the equivalent dose (De) that the sediment has acquired since deposition, which can be used in combination with the dose rate (Dr) to calculate the age.
Dendrochronology has three main areas of application: paleoecology, where it is used to determine certain aspects of past ecology (most prominently climate); archaeology, where it is used to date old buildings, etc.; and radiocarbon dating, where it is used to calibrate radiocarbon ages (see below).
In some areas of the world, it is possible to date wood back a few thousand years, or even many thousands. Currently, the maximum for fully anchored chronologies is a little over 11,000 years from present.
With a few important exceptions, living organisms keep all their amino acids in the "L" configuration. When an organism dies, control over the configuration of the amino acids ceases, and the ratio of D to L moves from a value near 0 towards an equilibrium value near 1, a process called racemization. Thus, measuring the ratio of D to L in a sample enables one to estimate how long ago the specimen died.
|
|